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I. INTRODUCTION 

Under Contract NASw- 1030, a preliminary investigation was 

conducted on the use of iridium as a high temperature oxidation protective 

coating for tantalum, n i  obi'um, molybdenum, and tungsten. The results 

of the one year program a re  presented in this report. 

I.I. SUMMARY 

Iridium-coated specimens of al l  of the substrate metals, prepared 

by pressure bonding or electrodeposition techniques, were subjected to 

oxidation tests in slow moving a i r  and in an oxygen-methane flame. 

time-to-failure (36  hours to 117 hours for 0.005-inch thick pressure 

bonded coatings-) experienced with iridium continues to point out i t s  high 

promise as  an oxidation protective coating for refractory metals. 

Premature failure of many of the electroplated samples was due to poor 

adherence of the coating. The overall oxidation study indicated that for 

some of the substrate metals the time-to-failure for an iridium coating 

can be increased by placing a diffusion barr ier  between the substrate 

metal and the iridium coating. 

The 



The rate of interdiffusion of iridium and tantalum was determined 

at various temperatures in the range 1200" to 1655°C. An apparent 

activation energy of 53. 5 kcal per mole was obtained for  the overall 

diffusion process. Efforts were made, unsuccessfully, to determine the 

growth kinetics of each of the intermetallic phases and the rate controlling 

step for the diffusion process. 

intermetallic phase formed that may be stable over only a limited tempera- 

ture .range. 

However, evidence indicates that a new 

Pressure bonding was found to be an effective method of consistently 
producing coherent and adherent iridium coatings on small sheet samples of 

all of the refractory metals studied. 

be adapted to coating large sheets of refractory metals with iridium. 

Insufficient knowledge of the chemistry and parameters that must be 

controlled in an electroplating operation prevented the production with any 

degree of consistency of adherent and coherent electrodeposited iridium 

coatings. 

Indications a re  that rol l  bonding can 

III. RESEARCH PROGRAM 

This program, involving a study of the application of iridium 

coatings to the refractory metals (Ta, Nb, Mo, and W) and the suitability 

of such coatings as  protection against oxidation at elevated temperatures, 

was concerned with four main areas of research. 

in Figure 1, these areas consist of (1) sample preparation, (2) chemical 

As shown diagrammatically 

I 

I 
compatibility studies, (3) mechanical compatibility studies, and (4) oxidation I 

studies. 
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t SAMPLE 
PREPARATION 
To- Ir W-It 
Cb-It Mo-lr 

CHEMICAL 

I I MECHANICAL 
COMPATIBILITY - 

/ I 

OXIDATION 
STUDIES 

Figure 1. Diagrammatic Representation of the Research Program 

N-7308 

A. Sample Preparation 

Iridium electrodeposited from a fused salt is the most promising 
of the coating techniques amenable to coating large, intricate geometrical 

shapes and, therefore, was selected a s  one of the main methods of 

sample preparation. 

further study, but this coating method also allowed an assessment of the 

influence of process variables on obtaining adherent and coherent coatings. 

Electroplating not only provided specimens for 

In addition to electroplating, roll bonding and pressure bonding 

Since roll bonding often provided other means of obtaining specimens. 

results in preferred crystallite orientation, this method of composite 

fabrication may alter the physical and chemical characteristics of the 

coating- substrate system. In addition, the latter methods a re  particu- 

larly amenable to the fabrication of coated sheets. 

specimens were required, all three methods of sample preparation were 

used. 

Since many test 

B. Chemical Compatibility 

The character of the interface between coating and substrate was 

established by optical metallographical means. This work established 

3 
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The tantalum and niobium ('/..-inch diameter rods and 0.005-inch 
and 0.020-inch thick sheet) were purchased from the Stellite Division of 

Union Carbide Corporation. Molybdenum and tungsten sheet (0.005 and 

0. 020-inch thick) were purchased from the Fansteel Metallurgical Corpora- 

tion. 

the extent of interdiffusion and intermetallic phase formation as  a function of 

time and temperature for the Ta-Ir system. 

impermeable to oxygen, the behavior of intermetallic phases and the influence 

bf interdiffusion on the oxidation resistance of the ir'idium was not known. 

Although unalloyed iridium is 

C . Mechanical C ompatibility 

The strength of the coating substrate bond was determined 
qualitatively at room temperature with a micro-bend tester. 

D. Oxidation Studies 

For  oxidation studies, both furnace and torch heating were used in 

general accordance with Materials Advisory Board specifications outlined 

in report MAB-201-M. 

IV. EXPERIMENTAL 

A. Materials 

The high purity iridium sheet used in these experiments was 

obtained from Engelhard Industries, Incorporated. Sheet thicknesses of 

0. 005, 0.010, 0. 020, and 0.040-inch were used, depending on the specific 

application. 

The sodium and potassium cyanides were high purity analytical 

reagent grades. 

4 
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B. Sample Preparation 

Emphasis was placed on preparing iridium-coated samples by 
electrodeposition from a fused salt electrolyte. 

and adherent deposits could not be obtained consistently, samples were also 

prepared by roll bonding, pressure bonding, and by the electrodeposition of 
niobium on iridium and tantalum on iridium. The alternate coating methods 

were also used to provide assurance that a "representative" coating- 

substrate system would be examined. 

However, because coherent 

1. 

The fused salt system developed by Withers and Ritt(')for the 

Fused Salt Electrodeposition of Iridium 

electrodeposition of iridium on nickel and/or gold was used. 

diagram of the apparatus used is shown in Figure 2. 

alumina crucible (3 

the 70  w/o sodium cyanide--30 w/o  potassium cyanide molten salt. Granu- 

lated alumina was used as  insulation between the alumina crucible, the steel 

jacket, and the furnace. 

A schematic 

The recrystallized 

inches outside diameter by 6 inches high) contained 

BAKELITE ELECTRODE HOLDER 
I 

THERMOCOUPLE WELL 

STAINLESS STEEL COV 

RECRY STAL 

CRUCIBLE 

RESISTANCE FURNACE I I 

INLET TUBE 

TER OUTLET 

Figure 2. Schematic of Iridium Electrodeposition Apparatus 
(Not to Scale) N-6711 
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Initially, the cell was operated with the bath exposed to the ambient 
atmosphere. Later, to minimize oxidation and moisture pickup, an argon 

atmosphere was maintained inside the stainless steel enclosure. 

temperature of the bath was determined b y  means of a Chromel-Alumel 

thermocouple positioned between the alumina crucible and steel enclosure. 

The molten bath temperature was maintained around 600°C during the 

plating operation. 

The 

Anodes for the molten salt bath consisted mainly of strips of iridium 

about 3/,3 inch wide. 

diameter rods of tantalum, niobium, tungsten, and molybdenum. For most 

plating operations, both electrodes were positioned in the cell by means of 

graphite rods inserted through Bakelite or  Teflon holders which were 

supported and centered above the molten bath by the stainless steel 

enclosure cover. 

The cathodes consisted of 20-Ml sheet and '/a-inch 

A solid-state power source capable of supplying direct current of 10 
to 1000 ma was used for plating. 

alternating current was passed through two iridium electrodes for a day or  

two. It later became evident that alternating current and two iridium 
electrodes were not necessary, since the anode efficiency always tended to 

be much higher than the cathode efficiency. Therefore, during the bath 

c ondit i o  ning t r eatment , which c on si s t e d of elect r opla ting us in g s pe c t r o - 
scopically pure graphite r o d s  as  anodes until a coherent iridium deposit 

was obtained, the bath was also being charged with iridium. 

satisfactory coating was obtained on the graphite rods ,  the refractory metal 

substrates were immersed in the bath. 

To charge the molten bath with iridium, 

As soon a s  a 

Since adherence of the coating to the substrate can be strongly 

influenced by the prior substrate surface preparation, various substrate 

preparations were used. 

in Section V, A, 2. 

The substrate surface preparations a re  discussed 

2. Roll Bonding 

Roll bonding of iridium to tantalum and niobium was performed using 
the Stellite Division facilities at Kokomo, Indiana. The substrates, 0. 020- 

inch x '/4-inch x 1 -inch, were sandwiched in"Haste1loy"Alloy X "cans" which 
6 
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were evacuated and welded. 

each pass through the mill. 

reduction in thickness of the "cans" was between 25 and 35 per cent. 

Rolling was done at 1200°C with reheats after 

A single rolling direction was maintained. The 

In the first two cans, alumina was sprinkled between the Hastelloy 

In can and the specimens to prevent bonding of the samples to the "can." 

a subsequent run, graphite foil was used a s  the spacer material. 

3. Pressure Bonding 

Vacuum hot-pressing techniques were also used to prepare 

specimens in picture-frame type composites (Figures 3a and 3b). Initially, 
the picture-frame composite consisted of a 5/8-inch diameter x 0.005-inch 

thick substrate disk sandwiched between two '/4-inch diameter x 0.005-inch 

thick iridium disks with the iridium "picture frame'' around the substrate 

disk (Figure 3a). 

containing a cylindrical insert (Figure 3b), a design which allowed additional 
iridium protection at the edges and facilitated suspension of the specimens 

in the oxidation test apparatus. 

This geometry was later modified to a square composite 

Figure 3a Figure 3b 

Figure 3. Schematic of Picture-Frame Composites 
Prepared for  Pressure Bonding N-7839 
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The composites were hot pressed at 1200°C at an ambient pressure of 
less  than 0. 3 torr. A pressure of 2700 lbs/in2 was applied for one hour. 

The die and plunger were machined from Union Carbide Corporation, Grade 

ATJ Stock. 

by inserting Union Carbide'Graf0il"as a separator between each composite. 

A s  many as four composites were hot pressed simultaneously 

4. Electrodeposition of Refractory Metals 

Several samples of ten-mil thick iridium sheet were electroplated 
with either niobium or  tantalum by the techniques developed by Mellors and 

Senderoff(2) of this Laboratory. 

refractory metals were formed by the electrolysis in molten fluoride baths. 

Coherent and adherent deposits of the 

C. Sample Evaluation Techniques 

1. Diffusion Studies 

Specimens prepared by electroplating iridium on the substrate metal, 

by the reverse process, and by pressure-bonding techniques were used for  

preparing diffusion couples. 

the desired temperature (in the apparatus shown in Figure 4), held at 

temperature for a predetermined length of time, and then furnace cooled to 

room temperature. 

chemical bond prior to annealing. 

a particular heat treatment, they were metallographically polished on an 

edge showing the coating, the substrate metal, and the reaction zone. 

The thickness of the reaction zone was then determined from photomicro- 

graphs and by direct measurement using a Tukon Hardness Tester with 

a calibrated eyepiece. 

boundary, all measurements of thickness represent an average value of 

several determinations. 

reproducible to within f 0.4 micron. 

Most specimens were heated under vacuum to 

Some specimens were preheated to establish a good 

After the specimens were subjected to 

Because of irregularities in the reaction zone 

A single measurement by either method was 

8 
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Figure 4. Vacuum Annealing Apparatus 
N-6405 

Normally, thirty minutes a r e  required to attain a temperature 

of 1200°C in the apparatus shown in Figure 4. 

thickness of the diffusion zone resulting from heating and cooling the 

sample, a specimen (an iridium-tantalum couple) was heated to 1200'C, 

held at temperature for  thirty minutes, and then furnace cooled. 

resulting diffusion zone was l e s s  than one micron thick. 

In order to determine the 

The 

Since only a few 
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minutes were required to heat the sample from 1200" to 1500"C, the heating 

and cooling periods were considered to have a negligible effect on annealing 

times at 1500°C. 

An L and N optical pyrometer was used to measure specimen 

temperatures. 

Bureau of Standards calibrated tungsten ribbon lamp and a standard a rc  

with sectored disks a s  radiation sources. 

absorption. 

The pyrometer was calibrated by means of a National 

Corrections were made for glass 

2. Mechanical Compatibility 

To provide a better understanding of failure modes than can be 
gained from a simple bend test and to conserve material until coatings a re  

considered representative, a fixture was constructed to allow direct 

observati'on of the microstructure as a bending s t ress  was applied to a 

coating- substrate system. The microbend test, f irst  proposed by Finn 
and Trojan(3), involves bending a small specimen, approximately 1 /4- 

inch x 'A-inch x 1-inch, in the fixture shown in Figure 5 while viewing 

the metallographically prepared surface with a microscope. 

s t ress  gradient is visible, from maximum tension on the outer edge to 

maximum compression on the surface butting against the center loading 

pin. 

The entire 

10 
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Figure 5. Mic r obend Fixture 
N-6513 

3. Oxidation Tests  

Oxidation tes t s  were conduc-ed in an oxygen-meLane flame and 

in an air furnace. 

a. Oxygen-Methane Torch Tests  

A National Welding Equipment Company Type 3A Blowpipe with an 
OX-4 tip was used in conducting the oxidation tes ts  in an oxygen-methane 

flame. 

of methane (natural gas) with Brooks-Rotameters to  a s su re  an oxidizing 

environment. 

of methane was used. 

The gas  flow rates were maintained at 1 1  CFH of oxygen and 5 CFH 

A 10-volume per cent excess of oxygen for the combustion 

1 1  



In a typical oxidation experiment, the test sample was supported in 

a vertical position by a zirconia holder which was slotted to accommodate the 

thickness of the sample. 

f rom room drafts. 

distance between the torch flame and test specimen, a distance which 

ranged f rom 0.5 to 5 inches. Temperatures were measured with a micro- 

optical pyrometer, which could be read to * 2 " C ,  by sighting on the side of 

the specimen which was opposite to the side exposed to the oxidizing flame. 

Corrections were made for the emissivity of iridium by comparing the 

temperature of a "black body" hole with the brightness temperature of the 

adjacent surface. 

and matt iridium surfaces. 

Graphite baffles were used to protect the flame 

Surface temperatures were regulated by varying the 

The corrections were determined for  both highly polished 

b. A i r  Furnace Tests 

A high temperature ther  mogravimetric unit consisting of an Ajax 
Magnothermic Induction Furnace and an automatic recording balance was 

used to conduct oxidation tests in slow moving air  (one volume change per 

minute). 

sample support (1) suspended from an automatic recording balance main- 

tained the sample (2) in the center of an impervious alumina furnace liner 

tube (3). An alumina thermowell (4) and gas inlet tubes (5) were sealed to 

the bottom of the furnace liner tube with alumina cement (6). 
assembly was insulated from a graphite susceptor (7) with graphite felt (8). 

A quartz envelope (9) was used to contain the felt. A thermowell, gas 

inlet, and a furnace flush inlet (10) were inserted in the bottom (11) of 

the quartz envelope and sealed with Sauereisen cement. 

(12rwere used to enclose the tops of both the furnace liner and quartz 

envelope. 

thermic spark gap converter. 

The furnace portion of the system is shown in Figure 6. A 

The entire 

Alumina plates 

The induction coil (13)  was energized with a 6 KW Ajax Magno- 

12 
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Figure 6. 2000°C 

Sample support 

Sample 

McDanel impervious alumina tube 

McDanel impervious alumina 
thermowell 

McDanel impervious alumina gas 
inlet tube 

Morganite 961 alumina cement 

Graphite susceptor (grade ATJ) 

Graphite felt (grade W D F )  
insulation 

Amer si1 opaque quartz envelope 

Quartz furnace flush tube 

Sauereisen No. 1 cement 

Sintered alumina plates 

Ajax Northrup 309 Induction 
furnace powered with a 6 KW 
Type "C" converter 

TGA Furnace 
N-6317 

The automatic recording balance unit consisted of an Ainsworth 

Type BB balance, a Fisher Scientific Company balance recorder, and a 

Model 75 Fisher Recording Analytical Balance control unit. 

c. Coating Recession Rate Determinations 

Three methods of determining the recession of iridium were used: 

Method 1 

The first method consisted of measuring the cross-sectional 

dimensions of the components (coating, substrate, and diffusion zone) by 

metallographic techniques after oxidation. 

specimen before and after oxidation, showing the iridium, the diffusion 

zone, and the tantalum thicknesses. The iridium thickness after oxida- 

tion was  3.4 mils, 1.2 mils of which were consumed by the diffusion 

Figure 7 is a schematic of a 

13 
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zone and 0. 4 mil by oxidation, The outer iridium surface recession rate  
was 0.02 m'il /hour for specimens oxidized at 1850°C. 

Initial Compos it e 

After 15 Hours in Slow Moving Air at 1850°C (3362°F) 

Figure 7. Schematic of Ir-Ta Composite After Oxidation 
at 1850°C for 15 Hours N-7840 

Method I1 

I 

The second method consisted of measuring an iridium portion of the 

composite where tantalum diffusion did not occur, i. e., at  the ends of the 

composite where only the iridium-iridium bond i s  present. The thickness 

of the iridium at the ends of the composite prior to oxidation was 15 mils. 
After oxidation, the average thickness of 15 measurements was 14.2 mils, 
corresponding to an iridium decrease of 0. 8 mil on each side of the 

specimen. Again, the iridium recession rate  was 0. 02 mil !hour for the 

15 hour test. 

14 
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Method III 

The third method consisted of measuring the weight loss of the 

specimen as  a function of time. In this case, the recession rate was 

determined by considering the weight loss, area, and density of iridium. 

For  example, the weight loss of iridium per cm’ of surface represents a 

certain thickness of the metal which can be calculated from the expression, 

X R = -  K 
d 

390  mils cm’ 
1 cm’ = 1 7 . 4  x 10-3K, 

where R = the recession rate in milslhour, 

K = linear rate constant mg/cm’/hr., 

and d = density of iridium = 22.42 g/cm3. 

A uniform weight loss  of 10 mg per hour was obtained for the 
oxidation of the Ir-Ta composite at 1850°C for 15 hours. 

area was 7.56 cm’, the recession rate was 1 . 3 2  mg/cm2/hr. 

above equation, R = 0.02 mil /hour. 

Since the surface 

Using the 

4. Visual Examination 

All  coating substrate composites, regardless of the method of 

preparation, were examined for external flaws with the unaided eye and 

with a low-powered microscope. Specimens that could be sectioned, such 

as those used f o r  studying diffusion effects and some of the electroplated 

sample s , wer e met allogr aphi cally poli shed and micr os copic ally examined. 

V. RESULTS AND DISCUSSION 

A. Coating Methods 

1 .  Pressure and Roll  Bonding 

Of the three coating methods used in this investigation, the pressure 

bonding method was the only one that consistently produced small sheets 

of the refractory metals coherently and adherently coated with iridium. 

15 
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Improper substrate surface preparation prior to electroplating 

invariably results in an irregular coating which is often nonadherent. 

inability to produce adherent iridium coatings on the refractory metals 

with any degree of consistency necessitated trying a variety of surface prep- 

arations. 

combination: (1) degreasing with acetone, ether, or alcohol, (2) vacuum 

degassing at elevated temperatures, (3) mechanical abrasion, (4) applying 

a prior subcoat of iridium by the slurry dip and sinter technique, and (5) 

various chemical cleaning methods (e. g., acid dip, base dip, or anodic 

and cathodic etching). 

to  the elaborate surface treatments recommended by the Defense Materials 

Information Center (DMIC Memorandum 35, October 9, 1959) "Procedures 

for Electroplating Coatings on Refractory Metals. I' 

methods tried provided some iridium-coated samples in which the iridium 

The 

The following cleaning processes were tried singly and in 

In addition, some of the substrates were subjected 

Most of the cleaning 

16 

High temperature pressure bonding provided a reaction zone between the 

substrate and the coating that resulted in good adherence. 

should yield the same results as pressure bonding; however, the contact 

time of substrate metal to the iridium coating, while under pressure,  is 

much shorter. 

between iridium and tantalum, but not between iridium and niobium. 

third attempt, in which the substrate metal was completely surrounded with 

iridium, failed. 

samples from bonding to the I'Hastalloy'' alloy X can, instead of the alundum 

powder used in the prior attempts. 

a high temperature protective coating for the refractory metals is still being 

investigated and since the roll bonding was not performed at  this Laboratory, 

it was felt that continued experimentation with roll bonding was not warranted. 

However, roll bonding looks extremely promising for coating large sheets of 

the refractory metals with iridium. 

and reliable method of producing small sheet samples, since the parameters 

temperature, pressure, and time-at-pressure) are easi ly  controlled. 

Roll bonding 

The first two attempts at roll bonding resulted in adherence 

The 

In the third attempt, "Grafoil" was used to prevent the 

Since the precise potentials of iridium a s  

Pressure  bonding is a relatively fast 

2. Fused-Salt Electrodeposition of Iridium 

a. Substrate Preparation Prior  to Electrodeposition 
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was adherent. However, none of the above methods resulted consistently 
in the production of adherent coatings. 

A method of surface preparation was developed and standardized for 
use on all of the substrate metals. 

resul ts  as good as or  better than the above treatments, even though we 

were still not able consistently to produce adherent iridium coatings. 

procedure involved (1) polishing the substrate metal surface with wet 

abrasion papers through 600 grit, (2) scrubbing with hot Alconox solution, 

(3)  rinsing with distilled water, (4) dipping into a dilute sulfuric acid 

solution (7-8 per cent) to insure neutralization of a residual basic solution, 

(5) washing again with distilled water, and ( 6 )  washing with 95 per cent 

ethyl alcohol. 

the fused salt electroplating bath. 

This standardized method yielded 

The 

The specimens were dried in a i r  before being placed into 

b. Cell Chemistry 

The electroplating procedure was described in the experimental 

section of this report. Since none of the refractory metal surface prepara- 

tions could be relied upon consistently to provide adherent iridium coatings, 

efforts were made to eliminate the introduction of impurities (e. g., oxygen 

and moisture) into the electrolyte. 

Interactions of the refractory metals with impurities in the hot 
electrolyte may also cause nonadherence of the electrodeposited coatings. 

An extremely dark layer between the coating and substrate often was 

present on those specimens on which the iridium did not adhere. This dark 

barr ier  layer may very likely have formed a s  a result of chemical reactions 

between the substrate metals and chemical species present in the molten 

salt. 

diffusion limited current, and alkali metals were deposited together with 

iridium. The deposition of alkali metals would have a pronounced effect on 

the deposits, producing powders, dendrites, and even slimes. Both X- ray  

diffraction and X-ray fluorescence methods of analyses were used to 

examine the dark barr ier  layer that formed on tantalum. 

very small thickness of this layer, no positive identification of this material 

could be made. 

The possibility also exists that the current density exceeded the 

Because of the 
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Several precautions were taken to prevent the contamination of the 

substrate metals by impurities present in the fused salt bath. 

precautions were: 

in the removal of water which is a commonly known contaminant in fused 

salt baths even at high temperatures, (2) pre-electrolyzing using high 

purity graphite as  cathodes to remove cation impurities, and (3) precoating 

the substrate metal with iridium b y  slurry coating and sintering to provide 

a surface which would be inert to attack by contaminates in the fused salt 

bath. 

did in many instances improve the coating, adherent coatings were still not 

cons is t ently produced. 

These 

(1) purging the bath with dry,  high purity argon to assist  

Although these precautions and prior surface treatment of the substrate 

Efforts were made to chemically analyze portions of the electrolyte 
of an operating cell to correlate the visual appearance of the electrolyte 

with the appearance of the deposit obtained, the total iridium content, and 

the iridium mean valence in the electrolyte. 

deposits were generally obtained when the electrolyte was  a transparent 

dark red color. An electrolyte that was light red to straw colored usually 

produced a deposit that was dull gray, rough, and quite often nonadherent. 

Apparently, then, the transparent dark red color indicates that the iridium 

in the electrolyte is in the proper valence state and the redder the bath, the 

higher the concentration of the iridium complex in  the bath. 

time-and-again that, upon standing overnight at the plating temperature, 

the electrolyte changed from a dark to a light red. Often, on standing at 

plating temperature over a weekend, the electrolyte changed from red to 

straw yellow. 

produced a bright metallic coherent deposit. 

Bright metallic coherent 

It was observed 

Once an electrolyte became straw yellow, i t  never again 

A literature survey by the analytical group at this Laboratory 

failed to disclose procedures that could be used directly to determine the 

total'iiidium content and the mean valence of the iridium in the electrolyte. 

From the literature on iridium cyanide complexes, it  was assumed that 

the Ir (II) - fr(III) reaction could be followed potentiometrically as  in the 

case of Fe (II) -Fe(III). Iridium forms divalent (4)and trivalent cyanide 

complexes which are  analogous to the ferro-ferric cyanides. Tetravalent 
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(5) and univalent iridium as a cyanide complex are  unknown. J. Kleinberg 
l ists  a platinum-cyanide complex in which platinum has a zero valence. 

This compound, when pure, disproportionates in water to yield, among 

other substances, platinum metal. On the basis of the known valences of 

iridium in cyanide complexes, one could suggest a mean valence of three 

or lower in the electrolyte. 

Preliminary chemical analysis indicates that electrolyte samples 
that were colored straw yellow or  white may contain iridium with a mean 

valence of three, whereas samples colored dark red had a calculated mean 

iridium valence of two or  less. One electrolyte sample actually indicated a 

mean valence close to one. The preliminary analysis indicates that iridium 

must be maintained in a low valency state. 

the complex iridium anion responsible for  producing a coherent deposit 

seems to be either on the threshold of instability (i. e., it  has too large a 

dissociation constant) or i t  readily oxidizes to a higher valence state. 

therefore necessary to avoid all types of oxidizing conditions, such as oxygen 

and moisture contamination of the electrolyte or insufficient anode area, 

that may raise the valence of iridium. 

insufficient to distinguish between electrolyte deterioration due to (1) a 

gradual build-up of impurities to a critical level that prohibits the deposi- 

tion of a coherent iridium deposit, o r  (2) the thermodynamic instability of 

the iridium complex giving r i se  to the noncoherent deposit. 

possible to overcome thermodynamic instability by continuous electroly- 

sis. However, achieving the proper cell conditions necessary for  the 

consistent production of coherent iridium deposits does not necessarily 

mean that the deposits obtained will be adherent. 

or oxygen in the hot electrolyte cannot only affect the valence state of the 

iridium in the complex anion, but i t  can also oxidize the substrate metal 

surface and prevent a coherent iridium deposit from being adherent. 

The thermodynamic stability of 

It is 

The data obtained thus far a re  

It may be 

The presence of moisture 

To overcome some of the difficulties experienced, a new cell is 

being constructed that will prevent atmospheric contamination of the 

electrolyte. 

valve. 

The new cell wil l  contain two chambers separated by a gate 

With the gate valve closed, the chamber containing the hot 
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electrolyte may be kept under an inert atmosphere while the electrodes a re  

inserted or  removed through the upper chamber. 

a r e  introduced, it will be possible to evacuate and/or purge the upper 

chamber, then open the gate valve and lower the electrodes into the elec- 

t r olyt e. 

When new electrodes 

Several experiments were conducted using iridium as  both the anode 

and cathode. 

steady state conditions of an operating cell, (2) the anode and cathode 

efficiencies, and (3) the anode and cathode reactions occurring on the basis 

of the number of electrons involved. 

obtained to permit a complete definition of the system. 

observations can be made. 

contain no iridium), both the anode and cathode lose weight even though a 

current is present. The anode initially oxidized, adding iridium to the 

electrolyte (as a complex compound) with a valence of two. A negative 

cathode efficiency may indicate that not only was the cathode reducing the 

valence of iridium in the electrolyte, but i t  also may have acted like a 

battery, the emf of which opposed that of the power source. 

was a loss of iridium at both the anode and cathode, an increase in  the 

iridium content of the bath, and a very low cell emf. A s  the iridium 

concentration in the bath increases, calculations indicate that four o r  five 

electron reactions may be occurring. At the anode, iridium with a valence 

of two may still be going into the bath, and, at the same time the divalent 

iridium, is being oxidized to a higher valence state. At the cathode, the 

higher valent iridium is reduced to the divalent state and, in a step-wise 

fasliion, the divalent iridium is  reduced to the free metal state. Calcula- 

tions also show that the cathode efficiency was always less  than that of the 

anode for any assumed valence state. Also, steady-state conditions were 

never achieved. Explanations of this behavior may be: (1) the baths may 

not have been fully saturated, (2) these characteristics are  typical of this 

particular salt system, (3)  the operating parameters of temperature, 

current density, or anode to cathode area ratio chosen on the basis of our 

work and that of Withers and Ritt'l'may not lead to the establishment of a 

The objects of these experiments were to determine (1) the 

To date, insufficient data have been 

However, some 

When a new bath is started (the fused salts 

The net result 
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steady-state condition, o r  (4) there may be a gradual increase in the con- 

taminant concentration of the electrolyte to a detrimental level. Since the 

operation of any bath for  a period of time always led to bubbling at both 

electrodes, oxygen and/or moisture build-up in the electrolyte a re  very 

probably the most serious problems. 
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A constant voltage, direct current power source was used to obtain 
the voltage-current characteristic curve for  the fused salt plating bath. 

Although the method used fo r  determining the current was not very precise 

(a standard cell is normally used instead of an ammeter), the results give 

an approximate indication of the cell potential limits within which the desired 

results would be expected to occur. 

to our specific plating operation, are shown in Figures 8 and 9 f o r  the 

electrodeposition of iridium on copper and tantalum, respectively. The 

results indicate that the cell potential range needed to produce an iridium 

coating that increased in thickness with time was between approximately 0.4 

and 1.5 volts. 

motion of charged species other than the iridium complex; in addition, the 

cell potential may be sufficient to decompose the electrolyte. 

and 1. 5 volts, the higher the cell potential, the greater the current density 

and, therefore, the deposition rate. The nature of the deposit (such as 

the formation of dendrites o r  a porous coating) may vary considerably with 

deposition rate; and, as reported b y  Withers and Ritt'l'the cathode 

efficiency is strongly dependent upon current density. 

The results, which a re  applicable only 

Above 1.5 volts, an increase in the current may be due to the 

Within 0.4 

21 



I,'. 
1 '  
I 
1 
I 
1 
I 
I 
I 
1 
I 
I 
1 
I 
I 
I 
I 
1 
I 

800 

600 

400 

200 

0 

I i 
I 

- 

- 

- 

- 

- 

- 

- 

- 

- 

I I I 
0 1.0 2.0 

VOLTS 

Figure 8. Voltage-Current Characteristic, Copper Substrate 

N- 7096 
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Figure 9. Voltage-Current Characteristic Curve, Tantalum Substrate 
N-7095 

B. Diffusion Studies 

The rate of growth of the reaction zone for iridium in contact with 
tantalum was determined at  various temperatures in the range 1200" to 

1655°C. Figure 10 is a graph of 
the square of the total reaction zone thickness versus time. Since the 

data points at each of the temperatures can be represented by straight 

lines, the reaction rate  obeys a parabolic rate law, and the reaction zone 

growth is diffusion controlled. 

The data a re  summarized in Table I. 

The straight lines shown in Figure 10 
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represent a least-squares treatment of the data excluding the data at 1570°C 

and 1655"C), and the slopes of the lines represent the rate of growth of the 

reaction zone at each temperature. 

pendent data, shown in Figure l l  as an Arrhenius plot, apparent activation 

energy of 53.5 kcal per mole is obtained for the total diffusion process. 

From the reaction zone temperature de- 

TABLE I 

HTGH TEMPERATURE DIFFUSION DATA FOR 
THE IRIDIUM-TANTALUM SYSTEM 

Annealing Time Total Diffusion Zone Growth Rate 
Minute s Thickness, Microns Microne'IMinute 

30 
60 

120 
180 
240 

60 
120 
180 
240 

5 
15 
30 
90 

5 
15 
30 
90 

120 
240 

5 
15 
30 
90 

30 
60 

* Least Squaree Calculations ** Average Values 

1200'C 

1.0 
1.5 
2.13 
3.0 
4.0 

1300°C 
3.2 
3.9 
5.4 
6.6 

1400'C 

2.0 
2. 3 
3.6 
6.4 

1500'C 

2. a 

9. a 
3. 9 
6.9 

1570°C 
19. 0 
25.0 

1600'C 

3.9 
6.4 

16.0 
9. a 

1655'C 
20.5 
23.5 

0.0523* 

1 0.177* I 
0.455 I *  

} ].lo* 
** } 2.2 

2.84* I 
} 4.4** 
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Figure 10. Reaction Zone Growth as a Function of Time,  Ta-Ir System 

N - 7842 
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Figure 11. Log Reaction Zone Growth Rate Versus 
Reciprocal, Degree s Kelvin 

N-7841 

The distribution of the intermetallic phases comprising the total 

reaction zone, illustrated in the photomicrograph of Figure 12, is of a 

tantalum iridium sample. The metallographic specimen was ele c t r  0-  etched 

in hydrochloric acid at five volts D. C. in accordance with the method used 

by Rapperport et al.(6) Four phases a r e  discernable between the light layer 

of iridium and the dark layer of tantalum in keeping with the reported 

phase diagram. However, specimens annealed at 1570" and 1655°C 

indicate that a new intermediate phase may be present that grows at the 

expense of the at phaee. At 1570" and 1655"C, the duration of the anneals 

were choeen to provide intermetallic phases sufficiently thick to be 

measurable. 

reveal in a manner which is reproducible, the individual intermetallic 

phases have not been obtained, indications a r e  that a new, or  fifth, inter- 

mediate phase may be present. 

Although the etching and/or staining techniques needed to 
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Figure 12. Representative Diffusion Annealed Tantalum-Iridium Sample 
750 X Magnification 

N-7858 

Efforts were made, unsuccessfully, t o  determine the growth kinetics 

of each of the intermetallic phases and the rate  controlling step for the 

diffusion process. 

mens with a microhardness tester failed to  reveal the thickness of the 

individual phases. 

techniques a r e  needed before the individual phases can be measured in a 

reproducible manner by metallographic techniques. 

the change in thickness of the reported intermetallic phases as  a function of 

Traversing polished cross  sections of annealed speci- 

Similarly, improvements in the etching and/or staining 

Figures 13 and 14 show 
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time at 1570" and 1655"C, respectively. The a], u, and TaIr3 phases 

increased in thickness with time-at-temperature. However, the at phase 

was observed to be decreasing in thickness with time at both temperatures. 

Whether the decrease in thickness of at with time is an artifact, produced 

by the polishing and etching techniques employed, or is caused by the forma- 

tion of a newly discovered intermetallic phase is presently unresolved. 

Microscopic examination of some of the specimens indicates that a new 

intermetallic phase is formed that may be stable over only a limited 

temperature range. 

with a microprobe, microprobe analysis may simplify measuring the positions 

of the intermetallic phase boundaries and identification of the individual 

Although no attempt was made to examine the specimens 

phases. 

O Eo I& I& 2b i40 
ANNEAUNG n w  , MIN. 

Figure 13. Intermetallic Phase Growth a s  a Function of Time at 1570°C 

N-8695 
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Figure 14. Intermetallic Phase Growth a s  a Function of Time at 1670°C 

N-8810 

C. Mechanical Compatibility 

The microbend test fixture was used to evaluate the mechanical 

compatibility of the refractory metals coated with iridium. 

were observed in the mechanical behavior between specimens prepared by 

roll bonding and pressure-bonded and electroplated samples. 

Differences 

A tantalum-iridium specimen that was reduced 20 per cent by  hot 
rolling was sectioned to provide two specimens for microbend tests. One 

specimen was tested in the as-rolled condition, and the other was vacuum 

annealed for four hours a t  1500°C before testing. Annealing produced a 

diffusion zone of approximately 15 microns and recrystallized the elongated 

iridium grains produced by rolling. 

condition was bent to an angle greater than 90 degrees, and no cracks 

were observed in the coating or the substrate. 

The specimen in  the as-rolled 

The annealed specimen 
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developed cracks in the diffusion zone when a very small load was applied. 

However, in spite of the diffusion zone cracks, bending was continued to an 

angle of approximately 21 degrees before the iridium coating began to 

fracture. 

maximum tension and propagated along the grain boundaries. Similarly, a 

s t r ip  of iridium which was hot-rolled with niobium but which did not adhere 

to  the niobium was bent to an angle greater than 90 degrees without the forma- 

tion of observable cracks. 

The cracks that appeared in the iridium initiated on the side of 

Pressure bonded specimens containing five mil iridium coatings on 

molybdenum, tungsten, and niobium were tested in the "as pressure bonded" 

condition, and one iridium-on-molybdenum specimen was tested after an 

oxidation test at 1800°C for 62 hours in the air furnace. 

plated specimens were tested in the as-plated condition. 

specimens, microcracks started on the side of maximum tension (the iridium- 

air interface) and propagated through the iridium coating, through the reaction 

zone, and finally, into the substrate metal. 
tests were discontinued was ten degrees or  less. 

Similarly, electro- 

In all of the 

The bend angle at which the 

Since the iridium coatings in  the pressure bonded and electroplated 

specimens fractured at very small  bend angles, no specimens were 

subjected to tests in the standard-sized bend tester. The tests performed 

demonstrated the extreme brittle behavior of iridium. The formation of a 
reaction zone between the substrate metal and the iridium coating does not 

drastically alter the mechanical behavior of a composite. 

D. Oxidation Tests 

Oxidation in slowmoving air (one furnace volume change of air per 

minute) was conducted On the substrate metals coated with iridium by 

electrodeposition and by pressure bonding. 

ranged in thickness from 2.5 to  3 mils, and the pressure bonded coatings 

were five mils thick. 

ranging from 11 00°C to 1850°C. The oxidation behavior was followed by 

continuously recording the specimen weight change as a function of time. 

Coating failures were denoted by  changes in the oxidation rates. 

The electroplated coatings 

Small sheet specimens were oxidized at temperatures 

Two 
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separate tests were performed on each of the coated substrate metals: 

oxidation continued until failure, and (2) oxidation discontinued after 15 hours 

or  longer but before the coating failed. 

tion on the life expectancy of the coating at temperatures above 1800°C. 

Oxidation tes ts  discontinued before failure provided data on the recession 

ra te  of iridium under the specific conditions of these tes ts  and provided 

specimens that could be sectioned and analyzed metallographically. 

Metallographic examination of specimens which did not fail provided data 

on the rates  of growth of the reaction zones between iridium and the sub- 

strate metals in addition to permitting an examination of the substrate 

metals for  indications of internal oxidation prior to failure. 

(1) 

The duration test provided informa- 

1. Air Furnace Oxidation of Pre ssure-Bonded Samples 

a. Results of Duration-to-Failure Tests 

Efforts were made to oxidize one composite from each of the systems 
investigated until failure above 1800°C. 

protected tantalum and molybdenum at 1850°C for 51 and 76 hours, respec- 

tively. Duration-to-failure time fo r  the iridium-niobium samples tested at 

1800°C was 36 hours. 

niobium system was significantly greater than the growth rates  for the 

other systems, the reduced life was expected. 

growth rate  observed was in the iridium-tungsten system. 

oxidation test of an iridium-tungsten specimen resulted in no failure after 

exposure for 117 hours a t  1850°C. 

cross-sectional specimen after the 117 hour exposure disclosed no signs of 

oxidation in the tungsten substrate. 

45p and consisted of two phases tentatively identified as  the u and E phases 

The five mil iridium coating 

Since the reaction zone growth rate in the iridium- 

The lowest reaction zone 

The air  furnace 

Metallographic examination of the 

The total reaction zone measured 

reported by Rapperport et al. ( 4 

The relationship between reaction zone growth rate and duration- 
to-failure life observed in these tests indicates the importance of future 

diffusion studies with respect to the reaction zone. 
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b. Results of 15-Hour T e s t s  

(1) Iridium-Tantalum System 

A total reaction zone thickness of 61.5 microns (2.42 mils) was 

revealed by metallography after a i r  furnace testing for 15 hours at 1850°C. 

Four (possibly five) phases were observed in the reaction zone microstructure. 

The four compounds reported in the 1iterature")were tentatively identified 

as cr , a1, aZ, and TaIr3. A new phase was  observed between u and al, that 

could be observed only by staining electrolytically for long periods of time. 

This new phase was also observed in diffusion-annealed specimens but was 

only present when the annealing temperature exceeded 1570" C. A similar 
high temperature phase was also tentatively identified by Rapperport, et  .al. (6) 

in the investigation of the Ta-Rh equilibrium diagram. 

Iridium recession due to oxidation during the 15-hour air furnace 

test  a t  1850°C was calculated to  be .024 mil/hour. Metallographic analyses 

referred to as Method I in Section IV, C of this report was used to make the 

calculation. 

of -082 mil/hour. 

was considered negligible, since examination of specimens in the "as pressure 

bonded" condition resulted in reaction zones less  than a micron thick. 

f i rs t  pressure bonded specimen reported previously (see NASw-1030, Progress  

Report No.  3 )  having a reaction zone of 16 microns resulted from too high a 

pressing temperature and holding time. 

Iridium loss  to the reaction zone by diffusion occurred at the rate 

Iridium diffusing to the reaction zone during hot pressing 

The 

Metallographic examination of the specimen after the a i r  furnace test 

revealed no internal oxidation to  the tantalum substrate. 

(2) Iridium - Tungsten System 

A total reaction zone thickness of 2 4 . 5 ~  (0.97 mil) was observed 

Two by metallography after a i r  furnace testing for 15 hours at 1850°C. 

phases were revealed after electrolytic etching which correspond to the u 

and E phases reported by Rapperport et al. (6)  

The iridium recession rate calculated by the weight change before 

and after exposure was - 0 6 6  mil/hour. 

total diffusion zone (0.97 mil) was a result of Ir loss,  since the thickness of 

Metallography revealed that all the 
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the W substrate was unchanged. 

diffusion zone was . 065 mil/hour. 

weight change is probably due to the heavier tungsten compounds being 

formed at the reaction zone which would affect the weight change. 

Therefore, the rate of iridium lost to the 

The slightly higher ra te  obtained by 

Metallography revealed no internal oxidation of the tungsten substrate 

after air furnace testing, 

(3) Iridium-Niobium System 

A reaction zone thickness of 66.6 microns (2.62 mila resulted from 
the 15-hour exposure at 1800°C. 

specimen and etching techniques failed to reveal the phases present in the 

reaction zone, 

Difficulties in preparing the metallographic 

The iridium recession rate calculated by the weight change before 
and after the oxidation test was 0,034 mil/hour, 

revealed that the Ir was being consumed by the reaction zone at  the rate 

of 0. 17 mil /hour. 

Metallographic techniques 

A metallographic examination of the cross-sectioned specimen after 
oxidizing revealed no internal oxidation of the Nb substrate. 

2. A i r  Furnace Oxidation of Electroplated Samples 

All  of the electroplated specimens showed initial failure during high 
temperature oxidation tests at a small fraction of the time estimated for 

the coating life. 

the coatings to the substrate metals, since submerging the coated speci- 

mens in hot acids (e. g., 1:l "03 with H F  solution added) indicated 

that the specimens had coherent coatings void of pinholes and microcracks. 

Exposure of the electroplated specimens to elevated temperatures, under 

air or argon atmospheres, usually produced blisters that could easily 

rupture. Since iridium coatings a re  not self-healing, localized coating 
failure quickly results in complete oxidation of the substrate metal. 

However, i t  was observed that when the substrate oxidation products were 

volatile, complete oxidation of the substrate metal left a hollow shell of 

iridium having the same shape it had prior to oxidation. This study strongly 

indicates that annealing the coated specimens to provide a diffusion bond will  

Premature failure was attributed to lack of adherence of 
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eliminate specimen failure due to blister formation. 

3. Summary of Air Furnace Oxidation Test Results 

The five-mil-thick iridium coatings pressure bonded to the substrate 

metals provided complete oxidation protection for f rom 36 to at least 117 

hours at temperatures from 1800" to 1850°C. 

were used for the Ir-Mo, Ir-W, and Ir-Ta composites and 1800°C for the 

Ir-Nb composite (the binary system contains a eutectic at about 1840°C). 

The results of the air  furnace tests a r e  tabulated in Table II. 

Test temperatures of 1850°C 

TABLE 11 

AIR FURNACE OXIDATION OF PRESSURE-BONDED COMPOSITES 

Duration to Failure 

Sub s t r at e Test Number Test Temperature Time to Total Exposure, 
& 

hrs. Failure, hrs. "C 

Ta 64-30-6 1 
Ta 64-30-65 

Nb 64-30-80 
Nb  64-30- 83 

1850 No failure 15.60 
1850 51 61 

1800 No failure 15. 75 
1800 36 70 

Mo 64- 3 0- 72 1800- 1850 No failure 62 
Mo 64-30-75 1850 76 200 

W 64-30-79 
W 64-30-81 

1850 No failure 15.25 
1850 No  failure 117 

.I, 7. 

The iridium coating on all substrate metals was five mils thick 

The loss of iridium was controlled by two factors: (1) the rate of 

oxidation and (2) the rate of interaction with the substrate metals. 

average recession rate of 0.02 mil 

was calculated from weight loss measurements. 

An 

of iridium per hour, due to oxidation, 

The life of an iridium- 

coated specimen was therefore greater for those substrate metals (e. g. ,  

molybdenum and tungsten) that reacted slowly with iridium, and the total 

life was shorter for the Ir-Nb system (in which the rate of interdiffusion 
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seemed to be the highest). 

for 117 hours. 

the specimen did not reveal any internal oxidation. 

The W-Ir specimen did not fail after being oxidized 

In addition, metallographic examination of a cross  section of 

One pressure-bonded composite of each of the metal substrates was  

oxidized at  elevated temperatures and the test was terminated prior to failure. 

The results of these tests (Table 11) indicate that the iridium loss  by diffusion 

proceeds at a greater rate than does the iridium lost by volatile oxide forma- 

tions. 

for Ta, and .166 mil/hour for Nb correspond to the duration-to-failure 

specimens in which the Ir-Nb specimen failed after 36 hours, the Ir-Ta 

specimen failed after 51 hours, and the I r - W  specimen showed no signs of 

failure after 117 hours. A s  expected from reported permeability studies, 

no internal oxidation of the substrate metals o r  the reaction zones was evident 

in any of the composites. 

The observed diffusion rates of .065 mil/hour for W, .082 mil/hour 

Since the growth of the reaction zones in all of the systems studied 

are diffusion controlled, the data obtained from the oxidation tes ts  cannot 

be used to predict the life expectancy of an iridium coating. An investigation 

of the parabolic growth rates in each system would yield the additional data 

needed to predict the coating life expectancy. 

4. Oxygen-Methane Torch Tests 

The oxygen-methane torch was used to thermally cycle pressure- 

bonded specimens in an oxidizing atmosphere. 

heating the specimen rapidly to the test temperature, maintaining that 

temperature to within f 15" for five minutes, and then a i r  cooling the speci- 

men to room temperature. The arrest  temperatures for the cycles to which 

Ir-Mo and I r - W  specimens were subjected were llOOo, 1400°, 1700", and 

1900°C. For the Ir-Nb specimen, the maximum temperature was 1800°C. 

For the Ir-Ta system, the a r res t  temperatures were around 1460", 1550", 

1795", and 1870°C. 

each cycle. 

Each cycle consisted of 

The specimens were examined with the unaided eye after 

There were no apparent signs of failure. 
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E. Mechanical Behavior of Iridium 

Iridium exhibits a high degree of work hardening, a behavior which 

is unusual for a metal having a face-centered cubic structure. The latest 

study on the deformation characteristics of iridium by Hieber, Mordike, 

and Haasen(') suggests that very small amounts of impurities segregated at 

the grain boundaries a r e  the cause of the unusual work hardening behavior. 

Unfortunately, the impurities causing the embrittlement a r e  not known and 

seem to be very much lower than those usually required to produce grain 

boundary weakness. 

tics of rhodium, Calverley and Rhys(*)also concluded that grain boundary 

segregation of unknown impurities was the cause of embkittlement. 

In a similar investigation of the deformation characteris- 

The unusual brittle behavior of iridium was also observed during 
this investigation. However, of greater significance was the observation 

that many of the iridium coatings that were electrodeposited on copper were 

a s  ductile a s  would be expected of face-centered cubic metals. Quite often, 

an iridium-coated copper sheet could be folded repeatedly by hand along the 

same line without the formation of cracks. 

tantalum and niobium, however, was not ductile. Microbend tests of these 

latter composites produced cracks at a bend angle of less than 10 degrees, 

the cracks propagating along the grain boundaries. 

roll-bonded with tantalum or niobium was bent to an angle greater than 90 
degrees with no observable cracks forming. 

Iridium electrodeposited on 

On the other hand, iridium 

A comparison was made between roll-bonded and electroplated 

iridium by means of X-ray diffraction and X-ray fluorescence analyses. 

The X-ray diffraction patterns of iridium electroplated on tantalum showed 

a random orientation of the crystallites, whereas the X-ray diffraction 

patterns of iridium rol l  bonded to tantalum showed preferred orientation. 

Both X-ray diffraction patterns and X-ray fluorescent patterns of the roll- 

bonded specimens showed the presence of aluminum. 

preferred orientation of the iridium was expected, the presence of aluminum 

metal was not. 

used a s  a barrier to prevent bonding between the specimen and the metal can. 

Apparently, the aluminum oxide was reduced to aluminum, which may have 
diffused into the iridium. 36 

Although the 

In the roll-bonding operation, aluminum oxide powder was 
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Sheet iridium is fabricated in a manner similar to the treatment used 

for roll  bonding (exclusive of the canning operation needed to protect the 

substrate metals from oxidizing). 

to tantalum and niobium was bent to an angle greater than 90 degrees in the 

microbend tester with no observable cracks forming, at a bend angle of 

less than 10 degrees, cracks developed in a 0.020-inch thick piece of as- 

received iridium. 

shown in Figure 15, a photomicrograph taken at  a magnification of 250 X. 

Efforts were made to enhance the plastic behavior of sheet iridium by heat 

treating small pieces (I/* -inch by 1-inch) of 0.020-inch thick and 0. 040-inch 

thick specimens in the following manner: 

thick iridium were held at 1400°C for ten minutes under a pressure of about 

5 x 
and the other slowly cooled to room temperature. 

to 33 degrees before microscopic examination revealed cracks; subsequently, 

they were bent thmugh angles greater than 90 degrees without complete 

destruction. Evidently, quenching did not eliminate grain boundary cracking, 

and the increased plasticity resulted from strain relief, grain growth, or 

recrystallization and grain growth. 

sheet of iridium were given the following heat treatments: 

men was held for  two hours and another for 6.5 hours at between 970" and 

lOOO"C, under vacuum, and slowly cooled, (2)  one specimen was held for 

1.5 hours and another for 72 hours at 970°C while encapsulated in a quartz 

tube containing powdered alumina, and (3) one specimen was held for two 

hours and a second for 64 hours between 600" and 630°C while encapsulated 

in a quartz tube containing powdered aluminum. All of the 0. 040-inch thick 

specimens, except the one encapsulated with aluminum powder and heated 

for 64 hours, started cracking on the sides of maximum tension at bend 

angles less  than ten degrees. 

especially on the compression sides of the specimens; these slip lines 

terminated at the grain boundaries. 

period surrounded by aluminum powder reacted with the aluminum. 

the sample was bent, cracks first appeared at an angle of about 37 degrees. 

Although iridium which was roll bonded 

The cracks propagated along the grain boundaries as 

Two specimens of 0. 020-inch 

torr. One of the specimens was quenched into a silicon oil  bath 

Both samples were bent 

Specimens cut from a 0. 040-inch thick 

(1) one speci- 

Slip lines were evident during deformation, 

The specimen heated fo r  a prolonged 

When 
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In this case, the cracks did not seem to s ta r t  on the side of maximum tension 

but, rather,  inside of what appeared to be a reaction zone. At approximately 

44 degrees, a large crack propagated halfway through the specimen and 

fractured the reaction zone. 

A 

Figure 15. Photomicrograph of an Iridium Strip Bent to  l e s s  than 10 Degrees. 
250 X Magnification 

N-7420 

Neg. No. 1404-1 

Although the above experiments a r e  not sufficient fo r  a detailed 
analysis of the mechanical behavior characteristic of iridium, they 

nevertheless substantiate the grain boundary weakness discovered by other 

investigator s. (7r8 Iridium can be plastically deformed at elevated tempera- 

tures. Cracks that appear upon deformation at  room temperature and 

propagate along grain boundaries a r e  usually indicative of an impurity that 
38 



is soluble in the metal at elevated temperature but precipitates out and 

agglomerates at the grain boundaries upon cooling to room temperature. 

The meager evidence accumulated in this and other investigations emphasizes 

the need for a research program designed to determine the effect of specific 

impurities on the deformation characteristics of iridium. A clear under - 
standing of the deformation characteristics of iridium would be of interest 

both from the practical and theoretical standpoint. 

VI. FUTURE PLANS 

A proposal was submitted for the extension of this contract, Contract 

NASw-1030, for  one year. 

mendation that a systematic effort be made to determine: 

This proposal outlines the basis for our recom- 

( 1 )  a suitable method of applying the iridium coating and 
(2) a more detailed study of the rate of interdiffusion of the coating and 

substrates for the Ir-Mo, Ir-W,  and Ir-Nb systems. 

Evidence indicates that the major obstacle towards obtaining, consis- 

tently, adherent and coherent iridium coatings by electrochemical means 

stems from a gradual build-up of impurities in the electrolyte to a critical 

level. 

prevent atmospheric contamination of the ele ct r oly te . 
T o  overcome these difficulties, a new cell was constructed that will 

The interaction of iridium with the substrate metals niobium, 

molybdenum, and tungsten may affect the deformation characteristics of the 

composite materials. 

oxidation is controlled by two factors: (1) the rate of oxidation, and (2) the 

rate of interaction with the substrate metals. 

adequately investigated; the latter has received some attention under the 

present NASw-1030 program, in which the rate of interdiffusion of tantalum 

and iridium was investigated as a function of temperature. To fully predict 

the life of an iridium coating in contact with niobium, molybdenum, or 

tungsten, one must study the rate of growth of the diffusion zone between 

iridium and these metals. 

In addition, the life of an iridium coating during 

The former has been 
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